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The bio-based synthesis of 1,4-butanediol (BDO), a key compound in many industries, has recently been
achieved in Escherichia coli, however the yield even in glucose was far below the theoretical maximum.
Furthermore, the impact of the BDO pathway on cell metabolism is yet to be discovered. The main objective
of this study was to in silico improve and analyze the production potential of BDO on glucose and glycerol and
evaluate the interaction between native and non-native pathways for wild-type and mutant strains using a
simple biosynthetic pathway. The maximum production potential and changes in metabolic fluxes were
simulated by different objective functions (biomass and BDO) and the reactions with highest differences
were identified under different environmental conditions. Considering the outcomes 80% of the reactions
with significant flux change were identical for all conditions simulated. Flux variability analysis was carried
out to decipher the variation of fluxes and flux span changes (SC) were calculated. To further analyse the
reactions with SC over 1 mmol gDW-1h-1 and to calculate the correlation coefficients for WT and mutant
strains uniform random sampling was carried out. Most important variations in correlation patterns were
observed for reactions in the mutant model. On the other hand, the addition, elimination and optimization of
different pathways significantly affected the pairwise correlation patterns as well as the entire solution
space of the network.
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Constraint Based Reconstruction and Analysis (COBRA)
methods are widely used to analyze genome-scale
metabolic networks and to guide metabolic engineering
efforts [1–6]. The literature is replete with studies describing
rational metabolic engineering approaches to generate
strains with improved functions to produce native and non-
native chemicals [1,7–12]. Current metabolic engineering
relies on genome-scale models (GEMs) in the process of
cell factories design for production of fine and commodity
chemicals.

For example, the GEM for E. coli, S. cerevisiae or Basfia
succiniciproducens was used to produce succinic acid
[12–14], 1,4-butanediol [9,11], erythromycin [15], or
ethanol [16], respectively. The number of metabolic
reconstructions is increasing day by day and using the GEMs
the microorganisms are modified to produce value added
chemicals from renewable raw materials such as
agriculture and industrial waste. For example, a huge
amount of glycerol is produced as a by-product of biodiesel
production which is an inexpensive and abundant carbon
source [17–19] as well as glucose from agriculture waste.
On the other hand it is mandatory to understand the impact
of air pollution on the environment as well as on the
rainwater chemistry [20–25].

E. coli is often used in fermentation processes to produce
different compounds, because it is a well known organism
and it has the ability to grow in low cost mineral medium.
Experiments were carried out in order to produce non-
natural metabolites [9–11], while a new metabolic
pathway has been incorporated into the organism. Previous
studies have shown that the huge complexity and number
of interactions can only be addressed in detail by metabolic
models [26,27]. BDO is an organic compound used
industrially as a solvent and furthermore it is used as an

intermediate in the synthesis of plastic and other chemicals
[28]. BDO production is strongly related to acetylene and
formaldehyde, which is the well-known Reppe chemistry,
a petroleum-based chemistry. Genomatica [29] is the only
company with commercial scale production, hence further
analysis are necessary to develop new heterologous
pathways and analyze in detail the biochemical processes,
interactions between native and non-native reactions
taking place inside the microorganisms. Using genome-
scale metabolic models the metabolic processes can be
simulated and analyzed in silico in order to better
understand the connections taking place.

In silico methods were successfully used to design,
analyze and create strains being capable to produce the
target metabolite [9,11,15,30–34]. The new heterologous
pathway has not been analyzed in detail before. In order to
evaluate the production potential, the impact of mutations
the following analyzes were carried out: flux balance
analysis (FBA) to estimate the maximum production
potential and the changes occurred in reaction fluxes under
given conditions [15,30], flux variability analysis (FVA) [35]
to calculate the range of flux variability for wild-type and
mutant strains that achieves optimal objective states. Flux
correlations were estimated using random sampling to
characterize the space of all flux distributions [31,36–38];
flux coupling analysis (FCA) [39,40] for classifying the
reactions depending of the coupling status [15,36,41,42].
Simulations were carried out using the most complex GEM
of E. coli published in 2011 [43] and completed by the
biosynthetic pathway necessary for BDO synthesis.

This study provides an example of metabolic network
analysis using the tools of systems biology, which may
provide an important contribution to decipher and
understand the metabolic changes taking place in
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metabolically engineered strain for non-native compounds
production.

Experimental part
During the research different methods were used, which

are described in detail below. All studies were done by
using the Constraint-Based Reconstruction and Analysis
(COBRA) Matlab Toolbox (Mathworks Inc., http://
www.mathworks.com/) [36,41]. Flux distribution,
optimization was solved using TOMLAB CPLEX (Tomlab
Optimization Inc., San Diego, CA, USA). Computations
were carried out according to the methods described by
[36,41]. The genome scale metabolic networks of E. coli
used through this work are as follows: wild-type model
iJO1366 (WT) [43], model with BDO pathway (WT+BDO)
[10] and optimized model - knocked out reactions- for BDO
production (WT+BDO+KO) [10].

Flux balance analysis (FBA) for optimal flux distribution
To evaluate the heterologous pathway impact on cell

metabolism reactions necessary for BDO synthesis from
succynil-CoA were added into this model (WT+BDO). Two
reactions were added as follows adhE1BUT (double
specificity alcohol/aldehyde dehydrogenase) to convert
succinyl-CoA to 4-hydroxybutyrate and in the final step 4-
hydroxybutyryl-CoA to 1,4-butanediol and sucCD or cat
(succinyl-CoA synthetase or catalase) to activate the
carboxylic group to obtain 4-hydroxybutyryl-CoA. Steps
involved in BDO production are outlined in figure  1 [10].
Furthermore, a preliminary optimization was carried out
by eliminating the competing pathways, formate, lactate
and ethanol for glucose and one more reaction was
eliminated in case of glycerol, glutamate dehydrogenase,
to block the formation of glutamate from 2-Oxoglutarate,
respectively. During FBA [44] analysis the objective function
was biomass formation and the solved linear
programming (LP) is summarized below:

where Z is the objective function, c is a vector of weights
(the contribution of each reaction to the objective function),
S is the stoichiometric matrix with m metabolites and n
reactions,  flux vector with n elements, vlb and vub represent
the lower and upper limits on the fluxes determined by
physiological and thermodynamic constraints, respectively.

The uptake rate of the main carbon source was
constrained in each simulation to a maximum of 20 mmol
gDW-1h-1 [30]. To simulate microaerobic conditions the
oxygen uptake rate was set to -5 mmol gDW-1h-1, while 0
mmol gDW-1h-1 was set for anaerobic conditions. This
method has been widely used to study the capabilities of
different organisms to synthesize different molecules,
biofuels or value-added chemicals [9,15,45–47].

Flux variability analysis (FVA)
FVA is a method widely used to identify the maximum

and minimum possible fluxes through each reaction of the
genome-scale metabolic network for a given maximum
objective value [31,35]. Calculations were carried out by
following the descriptions presented by [36]. Briefly, the
optimal predicted growth rate was constrained to 100% of
the optimal value under various environmental conditions
and the minimum and maximum values were estimated

to decipher the redundancy of reactions in the network.
Two optimization problems need to be solved during FVA
simulations for each flux vj of interest,

where Zbiomass is biomass optimal solution. Considering n as
the number of reactions then FVA requires the 2n LP
problems to be solved as mentioned previously. This
method was employed to determine flux ranges and an
attempt was made to classify the coupled reactions in the
wild-type+BDO and mutant metabolic networks [48].
Reactions are identified and categorized into four
categories by calculating the minimum and maximum flux

ratio for i.e.  respectively.

Analyzing flux correlations wild-type and mutant strains
using sampling

Uniform random sampling was performed in order to
characterize the entire solution space of all flux distributions
that are allowed by constraints [31,36,49]. The method is
based on the artificially centered hit and run (ACHR)
algorithm. Characterization of solution spaces of strains
harboring the biosynthetic BDO pathway and mutant
strains was carried out using ACHR with a total of 10 million
steps [38]. Reactions to be sampled were selected
considering the central carbon metabolism pathways and
the correlations between pairs of reactions were compared
under different environmental and genetic conditions. The
correlations between reaction pairs obtained for metabolic
network with BDO pathway were compared with
optimized genome-scale metabolic model.

Results and discussions
Modified GEM of E. coli with BDO pathway

The recently published GEM of E. coli [43] was modified
by introduction the biosynthetic pathway of BDO (Fig. 1).
This model has already been used to experimental studies
(10), however the possible complex interactions, impact
that take place between native and heterologous pathways
are yet to be discovered. In our previous study in silico
optimization was used under various environmental
conditions (i.e. carbon source was glucose or glycerol,
microaerobic and anaerobic conditions were tested with
multiple knockout) to reroute the carbon flux toward BDO
[50].

Here we have analyzed two models: 1) wild-type+BDO
(model containing the biosynthetic pathway of BDO); 2)
mutant model (with optimized BDO production -
eliminated reactions 3 and 4 KO, respectively).

Flux changes during theoretical maximum production of
biomass and BDO

Changes in flux distributions can be addressed by first,
optimization of biomass production and then simulating
the maximum production potential of the desired product
while the growth rate is fixed to a minimum value  of  0.1
h-1.  Number of reactions that showed a flux change at
least 1 mmol gDW-1h-1 for glucose and glycerol are as
follows: aerobic conditions 100, microaerobic 76,
anaerobic 63 and 85, 67 and 52, respectively. During the
evaluation of the maximum production potential reactions

(1)

(2)

(3)

(4)

(5)

(6)
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with highest flux changes were identified for environmental
conditions specified earlier. To understand the importance
of conditions on 1,4-butanediol production the most
important 100 reactions were selected and compared, the
results from this analysis are given in Fig. 2.

A number of conclusions can be drawn, even if the
oxygenation level was modified in case of glucose more
than 80% of the reactions with significant flux changes
considered in this analysis did not change. Similar tendency
was observed for glycerol, with 79% agreement. The
highest production rate was predicted for aerobic
conditions (maximum theoretical production), however
to obtain in vivo a stable strain for this condition is difficult.

Flux variability analysis within the metabolic network for
wild-type and mutant strains

FVA was carried by setting growth rate as the objective
function and the maximum and minimum possible fluxes
through each reaction were identified. The main difference
between FVA and FBA is that in the former the biological
objective is a constraint not the value to be optimized.
Briefly, the optimized objective value obtained with FBA
was used as a constraint during calculations of feasible
ranges of reaction fluxes (minimization and maximization
of each flux value). Substrate consumption rates were set
to 20 mmol gDW-1h-1, while the oxygen uptake rate was
modified to create microaerobic or anaerobic conditions.
The genetically modified strains for BDO production were
simulated by knocking out the pflB, adhE and ldhA reactions,
and one more reaction was blocked (upper and lower
bounds were set to 0), gludy, on glycerol in order to reroute
the carbon flux toward BDO. To analyze the impact of
environmental conditions and the genetic modifications
on flux ranges the flux variations were calculated for each
condition to decipher the feasible ranges of metabolic

fluxes. In Fig. 3 are presented only reactions with at least 1
mmol gDW-1h-1 flux change and those reactions with
biologically irrelevant high fluxes are not presented here.
Results are presented for wild-type and mutant strains on
glucose and glycerol under microaerobic and anaerobic
conditions where possible.

The reactions affected due to metabolic engineering
were the same as obtained for wild-type strains under
microaerobic conditions on glucose, there is 100%
agreement. Differences were observed only in flux change
values (Fig. 3. A). However, by changing the environmental
conditions, blocking oxygen uptake, in mutant strains a
significant flux change was predicted for FRD2, FRD3
(fumarate reductase), NADH18pp (NADH dehydrogenase
(demethylmenaquinone-8; 3 protons) (periplasm)) and
NADH17pp (NADH dehydrogenase (menaquinone-8; 3
protons) (periplasm)) which were not identified in wild-
type. On the other hand, by changing the substrate to
glycerol and the Ägludy the number of reactions for strains
was very different: 7 WT and 28 for mutant strains.

Flux span differences between wild-type and mutant
models were also estimated [31] for reactions and grouped
into different categories depending on the flux span change
(SC): glucose microaerobic - SC>10, 1<SC<10 and
0.01<SC<1 (reactions with SC=0 were not included), with
8.89%, 13.33% and 77.78% of a total of 45 reactions,
respectively. During anaerobic conditions flux span changes
were identified in case of 46 reactions. The percentage
distribution was 15.22%, 10.87% and 73.91%, respectively.
On the other hand, the reactions affected due to metabolic
engineering in case of glycerol under microaerobic
conditions are presented below: 24.69%, 13.58% and
61.73%. Significant span change was observed in 81
reactions, almost double compared to glucose. In both
cases the majority of the affected reactions lie between
0.01 -1, representing over 70% for glucose and over 60%
for glycerol.

Reactions with SC of more than 1 mol gDW-1h-1 were
chosen for further analysis. Were selected those reactions
with most changed fluxes among wild-type and mutant
models under oxygen limited conditions. Reactions most
affected by genetic engineering are involved in different
metabolic pathways: on glucose under microaerobic
conditions the reactions (FRD3, NADH12pp, NADH18pp,
FRD2, ACKr, ACS, PTAr, DHAPT, PYK, F6PA) are from citric
acid cycle, oxidative phosphorylation, pyruvate
metabolism, alternate carbon metabolism and glycolysis
pathways. The results obtained for anaerobic conditions
were the same, only the ACt2rpp and ACt4pp transport
reactions flux span was higher than the defined threshold.

Fig. 1. Heterologous biosynthetic pathway of
BDO introduced into E. coli [10]

Fig. 2. Venn diagram of reactions with significant changes under
various environmental conditions using different carbon sources:

A) glucose, B) glycerol
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On the other hand, by changing the carbon source from
glucose to glycerol 31 reaction was most significantly
affected. Figure 4 shows the pathways in which selected
reactions are involved. Flux span changes obtained for wild-
type models usually are less than that for the mutant
models, the opposite was observed during glucose growth
for three reactions (DHAPT, PYK, F6PA) under microarobic
and five reactions (DHAPT, F6PA, PYK, ACt2rpp, ACT4pp)
under anaerobic conditions, respectively. The majority of
high flux variability reactions are involved in redox balance
maintenance during steady-state growth.

Analyzing flux correlations using sampling
Sampling the allowed flux distributions is a simple way

to characterize the solution space, to identify the most likely
flux value through a reaction or to estimate the correlation
coefficient between pairs of reactions within the network
[36]. This method is an efficient approach to analyze the
perturbations caused by the introduction of heterologous
pathways or by the elimination of genes [31, 37, 51]. On
the other hand, the changes in the relationships between
fluxes before and after metabolic engineering can also be
studied. During uniform random sampling the substrate
consumption rates were fixed to 20 mmol gDW-1h-1 in both
models (wild-type and mutant) and the correlation
coefficient between reaction fluxes with SC over 1 was
evaluated. This analysis was carried out to decipher the
correlation patterns for wild-type and mutant strains. The
correlation coefficients, probability distribution of fluxes
and pairwise correlation are calculated on glucose and
glycerol to identify how interdependent these reactions are.

Environmental conditions for simulations were set to
anaerobic for glucose and microaerobic for glycerol (Fig.
5). The diagonal histogram indicates the magnitude of the
flux and the pairwise scatter plots on the off-diagonal
elements show the relationships between these reactions.
It is obvious that in both models the highly correlated fluxes
were almost the same, however significant differences
were identified in six pairwise (N17/FRD3, N18/N17, FRD2/
FRD3, FRD2/N18, PYK/DHAPT, PYK/F6PA) (Fig. 5). with
magenta rectangular boxes. For example, the first four
pairwise are almost fully correlated (negative correlation)
in the engineered metabolic model (correlation coefficients
(cf) -0.9), but low correlations were observed in the wild-
type model (cf ~-0.01) - these reactions are from oxidative
phosphorylation and TCA pathways. The opposite was
observed for the last two reactions, namely good
correlation in wild-type (cf -0.96) and less correlations in
modified model (cf -0.47) - reactions from glycolysis and
alternate carbon metabolism.

Analyzing the scatter plots, it is obvious that the
production strain (model) is more scattered compared to
the original model. The BDO production optimization during
anaerobic conditions leads to higher correlation between
selected reactions, hence reactions flexibility is influenced
by genetic modifications. We can also identify that in the
engineered model, the probability distribution of BDO fluxes
show a significant increase.

The correlation coefficients and flux distributions
obtained for glycerol under microaerobic conditions are
presented in Fig. 6. The probability distribution of fluxes
and pairwise correlation presented here are for reactions
with SC>10. Reaction pairs with high differences in

Fig. 3. The flux range for selected reactions at optimal growth rate. Using glucose
under A) microaerobic and B) anaerobic conditions; using glycerol C) microaerobic

conditions

Fig. 4. Flux span changes obtained for wild-type
and mutant strains under oxygen limited

conditions on glycerol. The pathways, number of
reactions and percentage distribution is

presented. Abbreviations: GLY - glycolysis;
PYR - pyruvate metabolism; PPP - pentose

phosphate pathway; TH&LY - threonine and lysine
metabolism; ACM - alternate carbon metabolism;
OF - oxidative phosphorylation; GL&SE - glycine
and serine metabolism; CAC - citric acid cycle;

FLA - flavodoxin metabolism; TRANS - transport,
inner membrane (periplasm)
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correlation coefficient are represented by magenta boxes,
and those with at least 0.3 change are shown by a turquoise
rectangular boxes. For example, a good correlation was
observed between BDO production and P (cf 0.75) in
engineered model, and no correlation was predicted in wild-
type model (cf -0.02). Reaction pairs with high or low
correlation coefficients (magenta boxes) are involved in
amino acid synthesis, pyruvate, electron transport and
glycolytic pathways. On the other hand, pairwise scatter
plots with correlation coefficient differences between wild-
type and engineered model at least 0.3 includes reactions
from alternate carbon metabolism, such as GLYK or
GLYCDx, oxidative phosphorylation, amino acid
metabolism, pyruvate metabolism, from pentose
phosphate pathway and electron transport pathways. In
this case, opposite to glucose many selected pairs of
reactions have 0 correlation coefficients, indicating that
these reactions in the network are not interdependent.

Flux coupling analysis of wild-type and mutant models
GEMs allow us to broadly decipher and classify the

functionally related coupled reactions found in the network
under various genetic and environmental conditions [39]

using flux coupling analysis. Briefly, the degree of
dependency between any two reactions can be
determined by minimization and maximization of flux ratios
(FVA). Then reactions are categorized based on the
relations they have with biomass for example. FVA was
applied during coupling analyses and the model was set to
100% of the optimal growth rate obtained for the conditions
and the classifications used in this study are as follow: a)
hard coupled to biomass (no differences in reaction and
biomass flux variation); b) partially coupled to biomass
(more flexible in the range); c) not coupled to biomass
(zero or non-zero flux while maintaining the biomass); and
d) zero flux reactions (cannot carry flux in growth
conditions) [52] Fig. 7.

The number of hard-coupled to biomass  reactions was
between 6-14 in glucose and 7-10 in glycerol. Nearly 50%
of the reactions are not coupled to biomass under these
conditions even if BDO production is optimized. For
example, BDO production is partially coupled to biomass
in mutant models under microaerobic and anaerobic
conditions if glucose is used as substrate and under
microaerobic on glycerol, respectively.

Fig. 5. Flux distribution of the reactions on
glucose using artificial hit and run sampling. The

magnitude of the flux through a reaction is
represented by histograms. The off-diagonal

scatter plots show the relationship between two
particular reactions. A) wild-type model,

B) mutant model
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Fig. 7. Flux coupling analysis of wild-
type and mutant models. Reactions are
represented on a logarithmic scale A)

for glucose and B) for glycerol

Fig 6. Flux distribution of the reactions on glycerol using
artificial hit and run sampling. The magnitude of the flux
through a reaction is represented by histograms. The off-
diagonal scatter plots show the relationship between two
particular reactions. A) wild-type model, B) mutant model

Conclusions
Using curated GEMs we are able to predict the behavior

of complex biological systems and analyze, design
industrially important strains with improved characteristics.
In this study we have used the GEM of E. coli with the BDO
biosynthetic pathway to study and characterize the mutant
models compared to wild-type. The biosynthetic pathways
were introduced into the complex and updated genome-
scale metabolic model of E. coli. To optimize the production
potential the competing pathways were eliminated and
the impact on cell metabolism was analysed for wild-type
and mutant models. Metabolism and metabolic changes
were analysed using well defined in silico methods: FVA,
sampling flux distributions, FCA.

The maximum production potential and changes in
metabolic fluxes were simulated by different objective
functions (biomass and BDO) and the reactions with

highest differences were identified under different
environmental conditions. As presented earlier 80% of the
reactions with significant flux change were the same for
all conditions simulated. FVA was carried out to decipher
the variation of fluxes under various genetic and
environmental conditions. Flux span changes were
calculated and were further analysed reactions with SC
over 1 mmol gDW-1h-1 and to calculate the correlation
coefficients for WT and mutant strains uniform random
sampling was carried out. Most important variations in
correlation patterns were observed for reactions in the
mutant model. As stated out by [31] the addition and
optimization of new metabolic pathways to the model
significantly affected the entire solution space of the
network as well as the reaction correlation patterns.
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Furthermore, minimal changes were identified between
glucose and glycerol. The majority of affected reactions
over 70% for glucose and 60% for glycerol lie between 0.01
and 1, and the most affected by genetic modifications are
involved in the central carbon metabolism. Analyzing the
scatter plots, it is obvious that the production strain (model)
is more scattered compared to the original model. The
BDO production optimization during anaerobic conditions
leads to higher correlation between selected reactions,
hence reactions flexibility is influenced by genetic
modifications. We can also identify that in the engineered
model, the probability distribution of BDO fluxes show a
significant increase. In case of glycerol For example, a good
correlation was observed between BDO production and P
(cf 0.75) in engineered model, and no correlation was
predicted in wild-type model (cf -0.02).

The in silico approach enable us to better understand
BDO production potential and the complex interactions
faced during metabolic engineering. Industrially competent
strains can be designed for native, non-native and non-
natural value added products in a rational and systematic
way.
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synthetase (ADP-forming); sucd -succinate dehydrogenase
(irreversible); fum -fumarase; mdh – malate dehydrogenase; cat -
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nadtrhd - NAD transhydrogenase; glyat - glycine C-acetyltransferase;
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